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Abstract 

The stability of long-period polytype stacking 
sequences can be shown to be dependent upon the 
energy contribution from interactions between the 
constituent modules (layers). Previous work has con- 
centrated upon interactions between nearest and next- 
nearest (i.e. first and second) neighbour layers. It is 
shown that in some polytype systems, such as wollas- 
tonite, the equivalence of certain pairs of stacking 
sequences places constraints upon the allowed inter- 
actions between the modules. A mapping between 
these polytypic systems and a simple spin model, the 
Axial Next-Nearest-Neighbour Ising (ANNNI)  
model is developed in order to derive a theoretical 
phase diagram for these polytypes. The predictions 
of this phase diagram regarding the relative stability 
of polytype stacking sequences are shown to compare 
favourably with observations reported for natural 
mineral systems. 

I. Introduction 

Many crystal structures can be grouped into structural 
families based upon the stacking together of a number 
of structurally compatible modules. The classical 
polytypes are one type of such a family. As strictly 
defined, all modules (layers) are identical in chemical 
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composition and atomic positions, the various poly- 
type structures differing only in the stacking sequence 
of the layers. However, Thompson (1981) has pointed 
out that, due to the stacking sequence itself, the layers 
in a particular polytype need not be crystallographi- 
cally equivalent, so that the condition of strict struc- 
tural and chemical equivalence might be relaxed in 
a practical definition of polytypism. Thompson there- 
fore proposed that the term 'polytypism' should be 
used to describe the family of structural variants 
generated by changes in the stacking sequence of 
structurally compatible units, provided the overall 
chemistry remains unchanged. This definition of poly- 
typism allows the internal structure of the modules 
to undergo small amounts of distortion so as to 
accommodate small stresses imposed on the module 
by the neighbouring modules in a stacking sequence. 

l hc theories developed to explain the observed 
variety of stacking sequences in a given polytypic 
system may be grouped into two types, The kinetic 
theories suggest that growth mechanisms play a pre- 
dominant role in generating polytypes, an early 
example being the spiral growth mechanism of Frank 
(1951). Although these may successfully explain the 
appearance of many polytype stacking sequences, 
they contribute nothing to our understanding of the 
relative stability of polytypically related structures, 
while the characterization of several reversible phase 
transformations between polytypes of SiC (Jepps & 
Page, 1983) suggests that polytypism is, at least par- 
tially, an equilibrium phenomenon. It was initially 
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proposed that long-period stacking sequences are 
stabilized by vibrational entropy (Jagodzinski, 1954), 
but Weltner (1969) demonstrated that the contribu- 
tion to the free energy from such effects alone was 
insufficient to stabilize polytypic structures. More 
recently it has been demonstrated (Smith, Yeomans 
& Heine, 1984; Price, 1983; Price & Yeomans, 1984; 
Price, Parker & Yeomans, 1985) that the relative 
stabilities of various polytype stacking sequences may 
be understood in terms of interactions between the 
component structure modules. These interactions 
may be equated with the energy differences brought 
about by the small distortions experienced by a 
module with the idealized structure when it is inserted 
into a given stacking sequence. It has been found that 
the stability of long-period polytypes is dependent 
upon the interactions not only between adjacent 
modules, but also between pairs of modules separated 
by greater distances. The competition between these 
interactions leads to entropic effects which then 
stabilize the longer periodicities. 

Price (1983) attempted to explain the stability of 
the spinelloid polytypes in terms of the interactions 
between first, second, and third neighbour modules. 
He found that the majority of the phases observed 
experimentally appeared in the ground state of his 
model, that is at zero temperature, but he was unable 
to quantify the behaviour of such a model at elevated 
temperatures when entropic effects may stabilize 
further stacking sequences. A suitable interaction 
model had, however, already been developed by 
statistical mechanicians (e.g. Elliot, 1961; Bak, 1982) 
to describe ordering in magnetic systems. This '_Axial 
_Next-_Nearest-_Neighbour Ising' (ANNNI) model 
involves only the interactions between first and 
second neighbour spins, but its phase diagram has 
been calculated for non-zero temperatures. Smith, 
Yeomans & Heine (1984) and Price & Yeomans 
(1984) showed that several polytypic systems could 
be modelled by the mapping of structure modules 
onto the magnetic spins of the ANNNI model. The 
resulting phase diagram successfully predicts the 
observed stabilities of polytypes in several mineral 
systems. 

However, the model employed by Price & Yeomans 
(1984) turns out not to be directly applicable to poly- 
typism in a certain class of structures. Their work was 
concerned primarily with predicting phase stability 
in the spinelloids. These are all derived by the stacking 
together of layers which have the spinel structure in 
one of two orientations. The resultant structures may 
then be described in terms of the orientations of the 
component layers, either up or down, which may then 
be mapped directly onto the magnetic spins of the 
ANNNI model. Price & Yeomans (1984) also 
attempted to explain the observed stable stacking 
sequences in other polytypic mineral systems with 
some success except in the case of wollastonite. The 

reason for this is that polytype systems such as wollas- 
tonite differ in a fundamental way from such struc- 
tures as the spinelloids. In the latter consecutive layers 
in either an up, 1', or down, ~, orientation are related 
by one of two stacking operators. Price (1983) called 
these T, which relates consecutive layers in the same 
orientation, 1'1' or ~,$, and S which relates two layers 
with opposite orientations, 1'$ or ~1'. The two struc- 
tures generated by the stacking sequences TTTTT.. .  
(=1'1'1'1'1'1'1' or $$$~$$) and SSSSS (=1'~1'$1'$1') are 
different. In many polytype systems there are also 
two stacking operators which, however, do not change 
the orientation of the layers, but do change their 
relative positions. These two operators are commonly 
referred to as T (=translate) and G (=glide). The T 
operator places the next layer in a position continuous 
with the preceding layer, while G introduces a glide 
or shear between two successive layers. Two classes 
of polytypic systems may then be distinguished upon 
the basis of their energetics. 

In the first class of polytypes are those systems in 
which, like the magnetic spin systems, the structures 
generated by the stacking sequences T I T F . . .  and 
G G G G . . .  are different. The relationship between two 
of the polymorphs of MgSiO3, clino- and protoen- 
statite falls into this category; clinoenstatite being the 
T V I T . . .  polytype, and protoenstatite the G G G G . . .  
polytype. The energetics of such polytypic systems 
may be described by a direct mapping onto the 
ANNNI model as shown by Price & Yeomans (1984). 
In this paper we examine the energetics of the second 
class of polytypic systems, in which the internal sym- 
metry of the layers forming the polytype is sufficient 
to make the two structures created by the stacking 
sequences T I T T . . .  and G G G G . . .  identical. Such 
systems include the polytypes of wollastonite, and 
the zoisite structures. In both cases the structure 
described by T I T F . . .  is the twin of the G G G G . . .  
structure. These two sequences therefore represent 
structures which have the same energies, and as a 
consequence the interaction parameters between the 
1st, 3rd, 5 th . . .  neighbour layers may be shown to be 
identically zero. The stability of such polytypes must 
therefore be modelled in terms of interactions 
between 2nd, 4th, 6 th . . .  neighbour layers. This 
requires a mapping of the polytype structures onto 
the ANNNI model which differs from that developed 
by Price & Yeomans (1984). 

In this paper we shall develop an interaction model 
for this class of polytypes and deduce its relationship 
to the ANNNI  model. For convenience this model 
will be termed the 'wollastonite model', although we 
shall show that it is applicable to many other polytypic 
systems. A phase diagram is then constructed for the 
wollastonite model in terms of the interactions 
between the polytype layers by mapping it onto the 
ANNNI model. The predictions of this phase diagram 
regarding the relative stabilities of polytype stacking 
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sequences are then compared with the sequences 
observed in natural mineral systems. 

2. The wollastonite interaction model 

The internal energy of a polytype is considered to 
comprise two components: the internal energy of the 
modules (layers) which is considered to remain con- 
stant and independent of the stacking sequence, and 
a contribution from the interactions between the 
modules. These long-range interactions arise from 
small adjustments to the internal structure of the 
modules imposed by the neighbouring modules in 
the stacking sequence. The contribution to the total 
internal energy of a stacking sequence of these inter- 
actions is therefore expected to be small. In their 
calculations of the energies of the spinelloids Price, 
Parker & Yeomans (1985) found that the interactions 
contributed of the order of 0.1% of the overall inter- 
nal energy. Nevertheless these interactions do appear 
to play a major role in determining the differences in 
free energy between polytypes, and hence their rela- 
tive stabilities. 

The A N N N I  model was developed in order to try 
to gain an insight into the factors which determine 
ordering in magnetic systems where long-period 
modulations develop based upon ordered layers of 
spins. In the ANNNI  model a magnetic spin is associ- 
ated with each point of a three-dimensional lattice, 
and interaction parameters are defined for neighbour- 
ing pairs of spins. These are chosen so as to keep the 
spins in two lattice directions ordered at low tem- 
peratures, while in a third direction orthogonal to 
these two a second parameter is introduced to 
describe the interaction between next-nearest-neigh- 
bour spins. Such a choice of coupling parameters 
results in a structure consisting of internally ordered 
layers of spins, but with the possibility of various 
spin sequences along the third axis. The analogy 
between the A N N N I  model and polytypism based 
upon the stacking of a single type of layer is clear, 
and was formalized by Price & Yeomans (1984). In 
this and other papers (Price, 1983; Price, Parker & 
Yeomans, 1985) the ground-state energy per layer of 
a polytype is written as: 

N 

E = E , - ( 1 / N )  EJ, E sjsj+, (1) 
i j = l  

where EI is the internal energy of a layer, N is the 
number of layers in the repeat unit of a regular 
stacking sequence, and sj, sj+i are spin variables of 
the j th and ( j +  i)th layers in the ANNNI  model, 
which take the values +1 and -1  for 'up' and 'down' 
spins respectively. The Ji are the interaction param- 
eters, equal to one half of the difference in energy 
between an ith-neighbour pair of layers with the same 
spins, and a pair with opposite spins. The assumptions 
made in the ANNNI  model are that only J, and J2 

are significant in determining the stabilities of stack- 
ing sequences, and that the interaction between next- 
nearest neighbours is independent of the orientation 
of the intervening layer. 

Price & Yeomans (1984) directly associated the up 
and down spins of the A N N N I  model with the up 
and down orientations of the component layers in 
the spinelloids. In the case of wollastonite either the 
component (100) layers of a polytype, stacking 
sequence are at a height y = 0, or they are displaced 
to a position y = 1/2. An up and a down spin may 
be associated with these two alternative positions 
(Fig. 1), the T stacking operator relating two consecu- 
tive layers with the same displacement along the b 
axis, and the G stacking operator giving rise to a 
relative displacement of 1/21010] between consecu- 
tive layers. Although we shall use this relationship 
between the layer position in wollastonite and spin 
orientation in the ANNNI  model to develop a phase 
diagram, the mapping between polytypes and spin 
systems may be generalized by considering a mapping 
between the spins of the ANNNI  model, and the 
stacking operators of the polytypes. This line of deri- 
vation is pursued in the Appendix, and is useful 
because it shows that the wollastonite interaction 
model is applicable to other polytypic systems in 
which the stacking operator G is some fraction of a 
lattice vector other than one half. 

We now need to introduce two forms of notation 
in order to describe the regular sequences of operators 
in polytypes, and the regular sequences of spins which 
appear in the ANNNI  model. For the polytypes a 
regular stacking sequence may be described in terms 
of a repeating sequence of stacking operators.* 
For example the unobserved four-layer polytype of 
wollastonite would have the stacking sequence 
T r G G T r G G  . . . .  which is written as (TrGG), the 
angular brackets defining the infinitely repeated 
operator sequence. Because of the cyclic nature of 
this sequence the same structure may equally well be 
described as (TGGT), (GGTr), or (GTrG). Further- 
more, because of the particular structures of the poly- 
types discussed here a sequence (G) generates the 
same structure, but in a twin orientation, as that 
produced by iT). It follows that a twin of a given 
stacking sequence may be generated by changing all 
of the operators to the other type. In the sequence 
used above as an example (TrGG) would become 
(GGT'D and is its own twin, while a sequence such 
as (ITG) is the twin of (GGT). 

In describing regular sequences of spins it is con- 
,venient to use the band notation of Fisher & Selke 
(1980, 1981). A series of consecutive spins with the 

* This stacking notation for polytypes is used in preference to 
that recommended by Guinier et aL (1984) in order to emphasize 
the relationships between polytype stacking and the quantum- 
mechanical spin models. In the approved notation the (T) and (G) 
polytypes are Aabc, (TG) is M2abc, (ITG) is A3abc, etc. 
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same sign is termed a band. Thus the repeating 
sequence in 

• .. 1'1',[,,1,1'1'1',1,,1,1'1',1,,I,,1,... (2) 

consists of two 2-bands followed by one 3-band. This 
is denoted (223) or (223). More generally, 
(n~, n z , . . . ,  nm) denotes a regular sequence made up 
of m bands of lengths nt, n2 , . . . ,  nm. 

The two stacking sequences (T) and (G) correspond 
to the spin sequences 1'1'1'1'1'... and 1'¢1'~1', or (oo) and 
(1) respectively. The ground-state energies per layer 
of these two sequences may be calculated from 
equation (1): 

E ( T )  = E ,  - J1  - J 2  - J3  - J 4  - - - .  

E ( G ) = E t + J t - J z + J 3 - J 4 + . . .  (3) 

As we are interested in polytypic systems where the 
structure generated by (T) is the twin of that generated 
by (G), these two stacking sequences must have the 
same internal energy: 

E ( G ) -  E(T)= 2(Jl + J3 +-/5 + . . . )  

=0. (4) 

A similar exercise for pairs of twin-related stacking 
sequences with longer periodicities, e.g. (TI'G) and 
(TGG), (TGGG) and (TYI'G), leads to the conclusion 
that Ji = 0 for all odd i, and that the stability of a 
stacking sequence in a polytype of this sort is depen- 
dent only upon the interaction parameters Ji for which 
i is even. 

In this study only the interactions between second- 
and fourth-neighbour layers, J2 and ./4, are considered 
so that the ground-state energy of a stacking sequence 
becomes from (1): 

N N 

E= Eg-(J2/N ) • sjsj+2-(J4/N) E sjsj+4. ( 5 )  
j = l  j = l  

r [ G (a) 
T ' (1001 (b)  13 

G . . . . . . . . . .  

(c) 
Fig. 1. The relationship between layer position and spin notation 

in wollastonite-like structures. Each (100) layer is represented 
by one unit cell and may be stacked in a position continuous 
with the previous layer as in the ('13 polytype (a), or may be 
displaced by 1/21010] as in the (G) polytype (b). (c) The stacking 
found in the (TG) polytype. 

The assumption that Ji = 0 for all i > 4 allows us to 
employ the A N N N I  model in developing a phase 
diagram for these polytype systems. In the next sec- 
tion the nature of the mapping of the polytypes onto 
the spin sequences of the A N N N I  model is described, 
and a phase diagram is constructed. 

3. Phase diagrams 

Consider a sequence of layers in the type of polytype 
where (T) is the twin of (G), and J1 = 3"3 = 0  as a 
consequence. The 1st, 3rd, 5 t h . . .  (2n + 1 ) th . . .  layers 
in the sequence interact with one another via the 
parameters ./2 and 34, as do the 2nd, 4th, 6 th , . . .  (2n)th 
layers. However, because J2,+1 = 0 there is no interac- 
tion between the odd-numbered layers in the 
sequence and the even-numbered layers. They thus 
form a pair of totally independent subsystems or 
lattices with no interaction possible between them. 
This means that any shift of the structure on one 
sublattice relative to the other has no effect on the 
energy of the system. And energetically each sublat- 
tice can be thought of as an independent spin system 
with the lattice parameter along the stacking direction 
double that of the true lattice. Each sublattice then 
has interactions between the nearest and next-nearest 
neighbours on that sublattice (being the ./2 and ./4 
interactions of the true lattice) and therefore forms 
an A N N N I  system. 

It is now possible to derive a phase diagram for 
the wollastonite model in terms of the interaction 
parameters ./2 and ./4 from that calculated for the 
A N N N I  model. For each region of the A N N N I  phase 
diagram in which a given spin sequence is the most 
stable phase the equivalent polytype stacking 
sequences can be deduced. To do this the A N N N I  
spin sequence is transferred to both sublattices to 
generate one stacking sequence. But because the two 
sublattices are independent the spins on one may be 
reversed so as to produce a second stacking sequence. 
For example, one of the ground-state sequences in 
the A N N N I  model is Coo) with the spin sequence 
1'1'1'1'1'1'1'..- (or $ ~ $ ~ $ . . . ) .  If this is transferred to 
both sublattices with the same orientation on both: 

t . t . t . f . l ' . l '  + 
. t . f . t . t . f . t  

= t t l ' t t t t t t t t t  
then the (T) polytype is produced. If, however, the 
spins on one sublattice are reversed: 

f . t . t . f . t . t  + 

=fCtSfStStSt¢ 
the (G) polytype, the twin of (T) is generated. Further 
structures may be generated from one A N N N I  spin 
sequence by translating the spins on one sublattice 
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relative to the other along the stacking direction. In 
this way two or more polytypes can be mapped onto 
a single ANNNI  phase. A simple example is the spin 
sequence <3) which appears at non-zero temperatures 
in the phase diagram of the ANNNI model. If the 
series of 3-bands of spins are transferred to the two 
sublattices of the polytype without relative displace- 
ment the sequence (TITI ' IG)  is generated: 

+ 

=tttttt$$  $$ 
But if the spins on the second sublattice are translated 
by one position the (TITGGG) polytype results: 

t . t . t . $ . $ . $  + 

=tSttttSt$ $$ 
These two sequences have the same free energy if 
only the J2 and J4 interactions are considered, and 
are thus said to be degenerate. As a result of this 
degeneracy the area in the polytype phase diagram 
corresponding to the stability field of the (3) phase 
in the ANNNI model will contain both ( 'ITITI'G) 
and (TITGGG). Longer spin sequences in the 
ANNNI phase diagram tend to map onto more poly- 
type stacking sequences, because there exist more 
possible relative translations of the spin sequences 
on the two sublattices. As a consequence the phase 
fields of the wollastonite model contain several poly- 
type stacking sequences and are thus multiply degen- 
erate. 

The ground states of the ANNNI model as a func- 
tion of ./1 and -/2 are shown in Fig. 2(a). For values 
of J2 > 0 equation (1) shows that sequences in which 
second-neighbour spins have the same sign have 
lower energies, and are thus stabilized relative to spin 
sequences in which second-neighbour spins have 
opposite signs. With J l > 0  sequences in which 
nearest-neighbour spins also have the same sign are 
favoured, while for J! < 0 nearest-neighbour spins of 

<1> 
¢ ¢ ¢ ; ¢ ;  .... 

4 

< G o >  

..... t llIl ..... 

opposite sign stabilize the spin sequence. For J2 > 0 
both first- and second-neighbour couplings are 
satisfied by the spin sequences (1) for J1 < 0, and by 
<oo) for J r>0 .  

However, for J2 < 0 there is competition between 
the configuration of second-neighbour spins whose 
low-energy state would be of opposite sign, and the 
configuration preferred by the -I1 interaction. For large 
values of [Jl[ this interaction predominates, and the 
two phases <1) and (oo) remain stable, while for small 
values of [Jtl a third phase, (2>, is stabilized by the 
competition between J1 and J2. On the boundary 
between <2) and <oo), J1 =-2./2, the ground state is 
highly degenerate, as all phases which do not contain 
any 1-bands have the same energy. The boundary 
between (1) and (2) at Jt = 2J2 is a similar multiphase 
line on which all spin sequences comprising entirely 
1- and 2-bands alone have the same energy. Note, 
however, that the boundary between <1) and (oo) is 
not a multiphase line, and only the spin sequences 
(1) and (oo) co-exist here. 

The ground-state phase diagram of the wollastonite 
model is given in Fig. 2(b). This has been derived 
from that of the ANNNI model by mapping each of 
the ground-state ANNNI phases onto the two sublat- 
tices of the polytype model as described above. The 
(oo) ANNNI phase maps onto the <T) polytype, and 
its twin <G), and the <2) ANNNI phase similarly maps 
onto the twin-related pair (TYrG) and (TGGG). The 
remaining ground-state AN NNI phase, (1), generates 
only the (TG) polytype which is its own twin. 

At finite temperatures the ANNNI model phase 
diagram remains essentially the same for most values 
of -/1 and -/2. However, in the regions near the multi- 
phase lines J~=2J2 and J~=-2J2  (.12 negative) 
entropic effects cause the breakdown of the 
degeneracies between various spin sequences which 
exist on these multiphase lines in the ground state. 
Fig. 3(a) shows the way in which the phase fields 
develop in the ANNNI model at low temperatures 
(Fisher & Selke, 1980, 1981); Jo is the interaction 
parameter between neighbouring spins within a layer 
and serves to normalize the temperature scale. 

<TG> 
..... I ¢ ; ; ¢ I  .... 

. "  <2> "- " <11 IG, 
-- .... Itli1 ¢ .... - -  . .    I ii;i 

(a) (b) 

<T> 
..... I I I I I I  

Fig. 2. The ground states of (a) the ANNNI model, and (b) the wollastonite model. 
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The phase diagram of the wollastonite model for 
J2 < 0 is shown in Fig. 3(b). As for the ground states, 
each ANNNI  spin sequence is transferred to both 
sublattices of the polytype model to generate the 
stable stacking sequences for the corresponding 
values of-/2, J4, and temperature. However, as we 
have already illustrated for the (3) ANNNI spin 
sequence, each ANNNI phase maps onto more than 
one polytype stacking sequence, all of which have 
the same free energy. In the ANNNI phase diagram 
there is a regular series of stable spin sequences 
between (1) and i2) which may be described as/12N), 
and the sequences i2N3) form a similar stable series 
between (2) and i3). Two analogous series do exist 
in the polytype phase diagram. The i12 N) ANNNI 
phases map onto a series of polytypes (TG(TITG)N), 
and the i2N3) ANNNI phases map onto the 
((TITG) lVITITIG) polytypes. However, the 
degeneracies between the polytypes tend to obscure 
this pattern, and also give rise to other series of stable 
polytypes. For example, (122) also maps onto 
i(TrG)2q[TrG), which is a combination of the second 
polytype mapped from i12),/TrG), with the (TITG) 
sequence. 

An alternative presentation of the phase diagram 
for the wollastonite model is made in Fig. 4, which 
is an isothermal section at non-zero temperature. Note 
that this section is drawn for a temperature at which 
K~T<< Jo; at higher temperatures the layers become 
increasingly disordered in the ANNNI model 
(Duxbury & Selke, 1983). Our attention is restricted 
to lower temperatures because this in-layer disorder 

is absent from most of the silicate structures to which 
the model is applied. In wollastonite itself such dis- 
order gives rise to bustamite-like stacking sequences 
along the c axis which are only observed very rarely 
as growth features (Angel, 1985). In the next section 
the predictions of the wollastonite model regarding 
phase stability will be compared with observations 
made on naturally occurring polytype systems. 

4. Discussion 

The widths of the phase fields in the ANNNI model 
and, by implication, the wollastonite model, decrease 
exponentially with increasing length of the repeat 
unit of the stacking sequence. So, in addition to the 
entropy-stabilized stacking sequences occupying 
multiply degenerate phase fields in the wollastonite 
model, the decreasing widths of the fields will make 
the experimental resolution of longer-period poly- 
types difficult. Furthermore, the phase diagram is 
drawn in terms of two interaction parameters which 
are functions of the structure of the layer modules 
forming the polytype, and they may thus be expected 
to vary with temperature and pressure, as well as with 
the chemical composition of the layers. Nevertheless, 
it is informative to compare the predictions of the 
model with actual polytype systems, as this allows us 
to deduce whether such a model gives a consistent 
description of the phases which occur in a polytypic 
system, and to suggest possible relationships between 
the interaction parameters and the intensive variables 
imposed upon the polytypic system. 

< > 

-2 2 J__L 
(a) q /  

- r r rGrG,  ~_~_.~ ,Tv r r6 ,  , rrrGGG, 

<TS> I <TTiG> 

-2 2 
(b) /JJ 

Fig. 3. Schematic phase diagrams, as a function of temperature 
(KBT/Jo<< 1) and ratios of interaction parameters, for (a) the 
ANNNI model (with J2<0), and (b) the wollastonite model 
(with ./4<0). The phase field labelled (TrlTG) also contains 
(TSGT3G) and (T3G3TG3). 

Wollastonite 

The two most common polytypes found in nature 
are iT) and/TG),  these being the only two to occur 
as sufficiently large unfaulted single crystals to allow 
complete X-ray structure determinations to be carded 
out. These two common polytypes occur as the two 
major ground-state structures in the interaction 
model, as well as remaining stable for a large range 
of the interaction parameters at non-zero tem- 
peratures (Fig. 4). The third ground-state polytype, 
(ITFG), was reported by Henmi, Kawahara, Henmi, 
Kusachi & Takeuchi (1983), and is now generally 
agreed to be the only four-layer polytype of wollas- 
tonite which occurs naturally. Wenk (1969) did report 
the occurrence of what he believed to be the other 
possible four-layer polytype (ITGG), but Jefferson & 
Bown (1973) showed that the diffraction data 
obtained by Wenk from this sample were more 
consistent with it being a mixture of (TG) and iT) 
polytypes. This was confirmed by a subsequent 
investigation of Wenk's original sample by trans- 
mission electron microscopy (W. F. Muller, personal 
communication). No further occurrences o f / ITGG)  



316 THE ENERGETICS OF POLYTYPIC STRUCTURES 

have been reported, even as short stacking sequences 
in disordered material. 

Only three other polytypes have been found in 
sufficiently ordered states to allow even their cell 
dimensions and stacking sequence to be derived from 
X-ray diffraction data. These are/TI'G) and (TYITG) 
(Henmi et al., 1983), both of which appear in the 
phase diagram at elevated temperatures with stability 
fields of significant size, and iTI'GTGTG) (Henmi, 
Kusachi, Kawahara & Henmi, 1978) which maps onto 
the ANNNI spin sequence (152). This seven-layer 
polytype is thus one of the structures which is stable 
on the multiphase boundary between (TG) and 
/TITG) in the ground state, but does not appear in 
the low-temperature region of the phase diagram 
shown in Figs. 3(b) and 4. However, in the ANNNI 
model i152) does have a restricted stability field at 
higher temperatures where significant disorder is 
present within the layers, so/TI 'GTGTG) will have 
a similar stability field in the phase diagram of the 
wollastonite model. Whether its occurrence in the 
material examined by Henmi et al. (1978) is due to 
growth within this restricted stability field, or to meta- 
stable growth under other conditions cannot be deter- 
mined. Metastability is always a consideration in 
these systems because the free-energy differences 
between polytypes are so small. 

Possible relationships between the interaction 
parameters and the intensive variables may also be 
deduced for wollastonites. Henmi et al. (1983) studied 
skams containing wollastonites and showed that the 
/TG) polytype is stabilized relative to the iT) polytype 
by increasing temperature. A microprobe analysis of 
one of the samples which shows this structural vari- 
ation was carried out by the present authors. There 
was no detectable variation in chemical composition 
between the polytypes, so the variation in the relative 
stabilities of the polytypes within the skarn may be 
attributed to temperature alone. We may thus con- 
clude that as temperature increases the J2 interaction 
parameter changes from positive to negative values, 
while the predominance of the (T) and (TG) polytypes 

-t 
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Fig. 4. An tsothermal section taken at 0< KBT/Jo<< 1 of the phase 

diagram of the wollastonite model. As for Fig. 3(b) the phase 
field labelled (TITI'G) also contains (TSGT3G) and (T3G3TG3). 

in nature suggests that J4 is positive (see Fig. 4) for 
most conditions under which wollastonite is formed. 
Experimental deformation of ordered wollastonite is 
known to induce stacking disorder (Wenk, 1969; 
Guggenheim, 1978) which could suggest that increas- 
ing pressure causes J4 to become negative, thereby 
placing the system within the area of closely spaced 
multiply degenerate phase fields. In such an area 
where many stacking sequences have very similar 
energies disordered stacking would be expected to 
occur. Alternatively this observed increase in stacking 
disorder may be a kinetic effect not related to the 
thermodynamic model deve!oped here. 

The interaction parameters for wollastonite may 
also be related to the adjustments made by the struc- 
ture due to the stacking sequence. Wollastonite is a 
single-chain silicate with three tetrahedra in the repeat 
unit along the chain. The silicate chains run parallel 
to the b axis and are linked together by parallel bands 
of large cation sites. Angel (1985) has shown that the 
introduction of a 1/21010] shear on (100) of the iT) 
polytype, which is the effect of a G stacking operator, 
changes the configuration of the tetrahedral chains 
around the cation sites. It is therefore to be expected 
that the ./2 and J4 parameters are mainly dependent 
upon the relaxation of the tetrahedral chains around 
the cation sites adjacent to the shear planes. 

Zoisite and clinozoisite 

The relationship between these two structures was 
first noted by Ito (1950). Both contain aluminium 
octahedra which share edges to form chains running 
parallel to the b axis which are cross-linked by cal- 
cium ions, SiO4 tetrahedra, and 5i207 groups. Ito 
proposed that the orthorhombic zoisite structure was 
a unit-cell twin of clinozoisite derived by introducing 
an n-glide twin operator parallel to (100) between 
every unit cell of the monoclinic polymorph. Careful 
refinement of the two structures by Dollase (1968) 
showed that although this relationship is qualitatively 
correct, many of the structural parameters of a zoisite 
structure generated in this way differ significantly 
from those of the refined structure. More recently 
Ray, Putnis & Gillet (1985) have shown that the zoisite 
structure may be generated by the introduction of 
1/41001] shears on (100) into every alternate layer of 
clinozoisite cells, and that the introduction of this 
same 1/41001] shear into every clinozoisite cell regen- 
erates the same monoclinic structure, but in a twin 
orientation. The structures based upon the stacking 
of (100) layers of clinozoisite structure are therefore 
polytypes of the same class as wollastonite, in that a 
structure described by the stacking sequence (G) (G 
in this case being a 1/41001] shear) is the twin of iT), 
where T generates a succeeding layer in an unsheared 
position. Clinozoisite and zoisite are therefore rep- 
resented by the stacking sequences (1") and (TG) 
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respectively. Faulting and disordered sequences are 
rare in these minerals and longer-period polytypes 
are unknown, which suggests that the interaction 
parameter J4 is positive for this polytype system. The 
orthorhombic form, (TG), is believed to be the high- 
temperature polymorph at the end-member com- 
position of Ca2AI3Si3012OH (Jenkins, Newton & 
Goldsmith, 1983); the monoclinic form being stabil- 
ized, however, by the substitution of Fe for A1 in the 
octahedral sites. The parameter J2 thus has a trajec- 
tory in the model phase diagram (Fig. 4) which passes 
from negative to positive values on decreasing tem- 
perature and increasing iron content. The change in 
J2 with Fe substitution is due to the relaxation of the 
octahedral chains and the adjoining Si207 group by 
rotation on increased Fe content of the Al(3) site 
(Dollase, 1968). 

Hydrated calcium chain silicates 

Two hydrated structures which are closely related 
to wollastonite have been reported to show polytyp- 
ism very similar to that observed in wollastonite. The 
structure of foshagite was refined by Gard & Taylor 
(1960) and consists of wollastonite-like silicate chains 
joined together by parallel bands of cations. In wol- 
lastonite the cation bands are three sites wide, but in 
foshagite there are four sites across each band, and 
the extra calcium in the formula is balanced by the 
addition of hydroxyl groups to the structure to give 
a composition CaaSi309(OH)2. Xonotlite is a double- 
chain analogue of foshagite with cation bands three 
sites wide and pairs of wollastonite chains cross- 
linked by shared oxygens between the offset 
tetrahedra (Kudoh & Takeuchi, 1979). Both of these 
mineral structures exhibit polytypic stacking variation 
of (100) layers in addition to stacking variation along 
the [001] axis which is analogous to the relationship 
between the structures of wollastonite and bustamite 
(Angel, 1985). In this paper we will only discuss the 
variation in the stacking sequences of (100) layers, 
as the variation along [001] should be described by 
the ANNNI model itself, or the two types of structural 
variation described together in a combined model for 
stacking variation along two axes. 

Two polytypes of xonotlite have been refined by 
X-ray structure determination, these being an 
analogue of (TG) wollastonite (Mamedov & Belov, 
1956), and a structure with a doubled c axis and a 
iT) stacking sequence of (100) layers (Kudoh & 
Takeuchi, 1979). Surveys of stacking sequences in 
this mineral by selected-area electron diffraction 
(Gard, 1966; Chisholm, 1979) indicate that the (T) 
stacking sequence is the most common, together with 
disordered sequences. In foshagite stacking variation 
along the c axis is far less common than along the a 
axis, and nearly all observed samples have a c-axis 
stacking arrangement analogous to that of bustamite. 

In the stacking along [100] of (100) layers the (T) 
polytype is dominant in natural samples, while (TG) 
is commonly found in synthetic material (Gard & 
Taylor, 1960). This difference must reflect the effect 
on the J2 parameter of the differences in the conditions 
under which synthetic and natural foshagite samples 
are formed. 

The observed dominant stacking sequences, (T) and 
(TG), along [100] in both xonotlite and foshagite 
suggest that, as in wollastonite, J4 is positive while 
J2 is a function of temperature and possibly other 
variables. Structurally these two parameters are 
related to the relaxation of the tetrahedral chains 
around the cation sites, as in wollastonite, but there 
will also be a contribution from the hydroxyl groups. 
Gard (1966) showed that in xonotlite stacking 
sequences in which all the cation sites are coordinated 
by an equal number of hydroxyl groups are stabilized 
relative to those structures in which this distribution 
is unequal. Kudoh & Takeuchi (1979) also noted that 
the more equal distributions were also those in which 
the OH.. .OH distances were largest. These factors 
are also present in foshagite, where the introduction 
of a single 1/21010] shear into a iT) stacking sequence 
moves the silicate chains which lie adjacent to the 
shear plane relative to the adjoining cation band. This 
will promote the redistribution of the H atoms associ- 
ated with this band, as they are allocated to those 
oxygens not coordinated to silicon. The distribution 
of hydroxyl groups in foshagite is thus also a function 
of the stacking sequence along [100] and will make 
a contribution to the J2 and J4 interaction parameters. 

Pectolite- serandite 

The relationship between the structure of the 
pectolite-serandite solid-solution series, (Ca, 
Mn)2NaHSi309, and that of wollastonite was dis- 
cussed by Prewitt & Buerger (1963). They showed 
that the pectolite structure possesses the same 
pseudosymmetry as wollastonite, so that a (T) and a 
(G) (G=l /2 [010] )  stacking sequence are twin- 
related. Muller (1976) carried out a survey of the 
stacking sequences in samples of these two minerals 
and found that pectolite frequently exhibits stacking 
disorder of (100) layers, as well as existing as both 
iT) and (TG) polytypes. By contrast serandite, the 
manganese end-member, only appears to exist as the 
iT) polytype with infrequent stacking faults. As with 
wollastonite we expect the J2 and J4 interaction 
parameters to be related to the degree of distortion 
around the cation sites. The observations made by 
Muller suggest that these are sufficient in serandite 
to keep J2 and Ja positive, and thereby prevent poly- 
typic stacking variation. In pectolite the larger cal- 
cium ion is more easily coordinated by the silicate 
chains, and less distortion is therefore introduced by 
sequences of stacking vectors other than (T) or (G). 
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The (TG) polytype appears to be the most common 
stacking sequence in pectolite after (T), in line with 
the prediction of our model. This could be explained 
by J2 becoming more positive with increasing 
manganese content. 

5. Conclusions 

We have demonstrated that, energetically speaking, 
there are two classes of polytypes based upon the 
stacking of nominally identical layers by two stacking 
vectors. The class of polytypes treated in this paper 
differs from the more common class (e.g. spinelloids, 
pyroxenes) in that an exchange of all the stacking 
operators in a repeat sequence produces the same 
structure in a twin orientation. Since twin-related 
structures have the same energy, an interaction model 
applied to such a polytypic system has constraints 
imposed upon some interaction parameters which 
differ from those used in previous models used to 
explain polytype stability. By applying these con- 
straints we have developed an interaction model for 
this second class of polytypes in which the relative 
stabilities of polytype stacking sequences are depen- 
dent upon the interactions between second- and 
fourth-neighbour pairs of layers. The assumptions 
made in this model of polytypism should be stated 
explicitly: 

(1). Interactions between pairs of layers more dis- 
tant than fourth neighbours are assumed not to con- 
tribute to the free energy of a stacking sequence. 

(2). The pair-wise interactions used in this type of 
model [equation (1)] are assumed to be independent 
of the configuration of the intervening layers. 

If, however, these configurations do contribute to 
the energy of a polytype stacking sequence we should 
add extra terms to the Hamiltonian which depend 
upon the product of consecutive layer spins, such as 

N 

- ( K /  N )  Y. SjSj+ISj+2Sj+ 3. (6) 
j = l  

Although some of these possible extra terms must 
be zero in the class of polytypes considered here 
because of the equivalence of twin-related stacking 
sequences, others such as (6) are still permitted, and 
may contribute to the free energy of a polytype. The 
reason we have chosen to neglect these terms is that 
the phase diagram for the woUastonite interaction 
model may easily be derived from that calculated for 
the A N N N I  model. The introduction of further terms 
such as (6) into the Hamiltonian results in models 
for which the ground states may still be calculated, 
but which are currently unsolved at non-zero tem- 
peratures. The success with which the wollastonite 
interaction model predicts the stabilities of the 
observed stacking sequences of wollastonite poly- 

types suggests that these other possible interaction 
terms are less important than those considered in our 
model. 

By consideration of the structures of this class of 
polytypes we have also indicated how the interaction 
parameters might be related to various structural 
features. The use of axial Ising spin models such as 
the A N N N I  and the wollastonite models to describe 
the energetics of polytype systems has been shown 
to be a potentially powerful tool for the prediction 
of the relative stabilities of polytype stacking 
sequences. 
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APPENDIX 

Within the main part of the paper we have equated 
the two possible positions of the layers in wollastonite 
with two spin-like variables which may have the 
values + 1 or -1 .  It is the purpose of this Appendix 
to show that a more general description of the ener- 
getics of such polytypic systems is obtained if we 
write the energy, or strictly speaking the Hamiltonian 
of the system, directly in terms of the sequence of 
stacking operators. 

Let us associate a variable tj with each stacking 
operator in the stacking sequence, which has a value 
+1 for the T operator and -1  for the G operator. 
Since each operator relates two consecutive layers in 
the polytype with spin variables sj and sj+~ we note 
that there is a mapping between the layer spins and 
the operator spins: 

sjsj+ l ~ tj. (A1) 

This follows because a T operator (tj = + 1) relates 
two layers with the same spin variables, the product 
of which is always +1, while the G operator relates 
two layers with different spin variables, and hence a 
product of -1 .  

The energy of a stacking sequence may now be 
written in terms of the interactions arising from a 
sequence of operators. Using the transformation (A 1) 
equation (5) becomes 

N N 

E = E , - ( J 2 / N )  E tjtj+~-(J4/N) ~ t:tj+~tj+2t:+3 
j = l  j----1 

(A2) 
where the first term is a nearest-neighbour interaction, 
and the second describes a four-spin interaction 
which depends on the configuration of four consecu- 
tive layers. 
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By considering the energetics of the wollastonite 
model in terms of the interactions between stacking 
operators we have been able to show that the model 
possesses two important features: 

(1). The interaction represented by -/4 does include 
a contribution from the configuration of  the layers 
between the j th  and ( j + 3 ) r d  neighbour layers. 

(2). The association of  spins with layer position 
used in the body of  the paper suggests that IGI must 
be one half  of  a lattice vector, but the derivation in 
terms of operators places no such constraint upon 
the magnitude of the displacement associated with 
the glide operator G. This justifies the use of the 
wollastonite model in systems such as zoisite where 
G =  1/41001]. 
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Abstract 

An exhaustive count is performed of all possible 
perovskite-like A B X 4  phases, with the assumption 
that the only occurring symmetry-reducing operation 
is the tilting of  regular B X  6 octahedra. Each structure 
is schematically represented and is fully determined 
by its structure symbol, the space group and the 
diffraction features, which are condensed in a power- 
ful shorthand notation: the 'diffraction typology'.  
Attention is paid to the displacement of the A cation 
and the resulting antiferroelectricity. The interrela- 
tions between the structures are presented in the 

* Work performed under the auspices of association SCK- 
RUCA and with financial help from IIKW. 

t Also at: SCK/CEN, B-2400 Mol, Belgium. 

'family tree' formalism in order to provide insight 
concerning the group-to-subgroup relations as a help- 
ful tool in the prediction of phase transitions. 

I. Introduction 

Perovskites with general structure formula A B X  3 such 
as SrTiO3 and NaNbO3 undergo phase transitions 
featuring the condensation of soft phonon modes 
upon lowering the temperature (Ahtee, Glazer & 
Megaw, 1972; Kay & Bailey, 1957). The perovskite- 
like A B X 4  compounds such as RbVF4 and RbFeF4 
have a basic structure that is very similar to the basic 
A B X 3  structure as can be seen by comparison of Figs. 
l ( a )  and l (b) :  in the A B X 4  case the B X  6 octahedra 
are only two-dimensionally comer linked, thus form- 
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